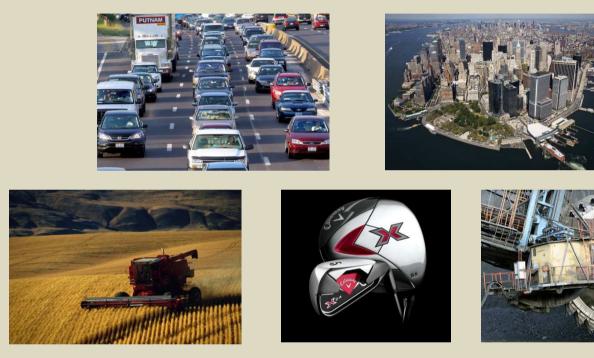
Solutions for Waste in the Foundry Sector

Robert S. Dungan, Ph.D. Research Soil Scientist USDA-ARS, Kimberly, Idaho, USA robert.dungan@ars.usda.gov


History of Metal Casting

USDA United States Department of Agriculture Agricultural Research Service

 \geq

Worldwide Importance of Foundries

Many Hurdles

- Lackluster economy
- Cheaper imports
- Competitive market
- Shrinking customer base
- Infrastructure upgrades
- Burdensome regulations
- Waste disposal issues

What Can Foundries Do?

- Nothing
- Close
- Sell
- Take action!!!

Foundry = Recycling ≈ Green Industry

Metalcasting Waste Products

Molding sand Core sand Slag **Baghouse dust Furnace refractory Broken** cores Shotblast fines **Graphite electrodes**

Fate of Most Foundry Wastes

Tandil, Argentina

Definition of Beneficial Use

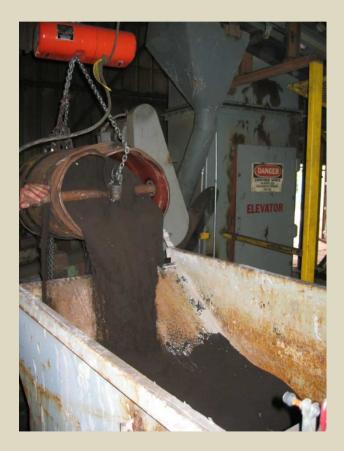
"Any further use other than the original use of a discarded material or byproduct that would otherwise become waste"

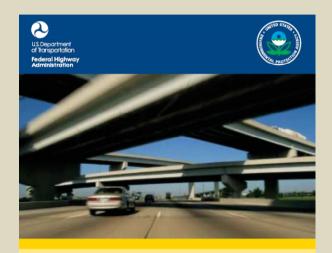
Winkler and Bol'shakov, 2000

Beneficial Use ≠ Recycling or Reuse

Why Beneficially Use Foundry Wastes?

- Conserve raw materials and energy
- Minimize pollution of soil, water, and air resources
- Turn waste into a valuable resource
- Reduce disposal costs
- Improve competiveness of foundries




Waste Foundry Sands

Largest waste from the Foundry Industry

- Asphalt
- Concrete
- Construction fill
- Flowable fill (CLSM)
- Grouts and mortars
- Highway embankments
- Landfill liners and covers
- Paver stones and bricks
- Pipe bedding
- Potting and specialty soils
- Road bases

U.S. Department of Transportation

Foundry Sand Facts for Civil Engineers Technical guidance document for the beneficial use of waste foundry sands in civil engineering applications

First Printing, May 2004

FHWA-IF-04-004

http://isddc.dot.gov/OLPFiles/FHWA/011435.pdf

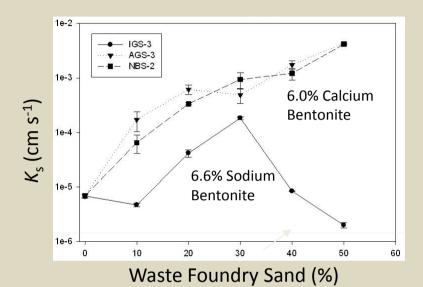
Defining WFS For Beneficial Use Applications

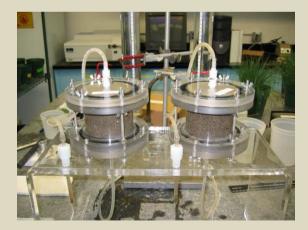
- WFS = Clay or chemically bonded molding/core sands
- Segregate sands from other waste materials (e.g. core butts, metal fragments, debris)
- Quality and consistency are very important (Quantity too!)

Agricultural and Horticultural Applications

- Direct land application (improve soil texture)
- Potting soils
- Topsoil (landscaping and turf grass)

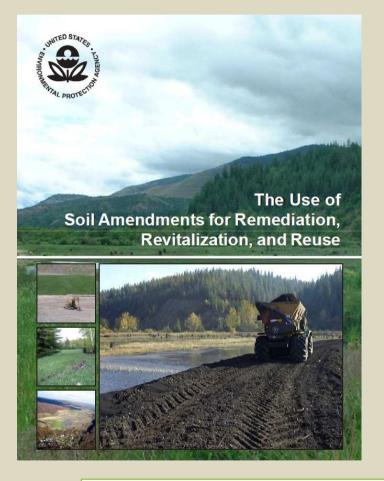
What are the Risks from Foundry Sands?


- "Cleaner Than Dirt" campaign
- Metal concentrations similar to levels in native soils
- Low dioxin, PAH, and phenolic concentrations
- Conducted foundry sand risk assessment with U.S. EPA (home gardener scenario)
- Most ferrous and aluminum foundry sands are safe for use in soil-related applications



Metals in Foundry Sands (mg kg⁻¹)

Element	Waste Sands		North American Soils	
	Median	Max	Median	Max
As	1.1	7.8	5	18
Ba	5.0	141	526	1,800
Cd	0.05	0.36	0.2	5.2
Со	0.88	6.6	7.1	143
Cr(III)	4.9	115	27	5,320
Cu	6.2	137	12.7	81.9
Mn	54.5	707	490	3,120
Мо	0.5	22.9	0.82	21.0
Ni	3.46	117	13.8	2,314
Pb	3.7	22.9	19.2	245
Se	0.20	0.44	0.3	2.3
Zn	5.0	245	56	377

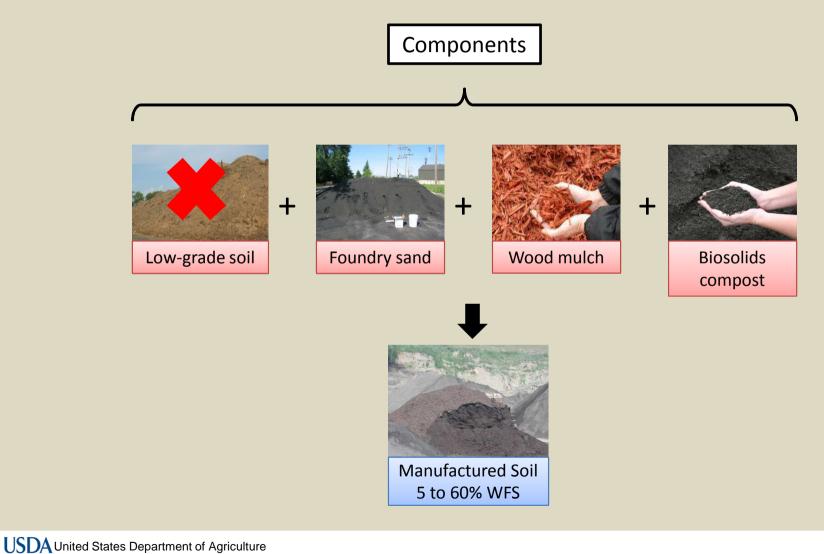

Land Application Considerations

- Blending of sand into soil can allow for increased hydraulic conductivity
- However, massive amounts of sand would be required
- 2,000 Tonnes of foundry sand required per hectare to increase the sand content by 10%
- Compaction!!!

Soil Amendment Resource

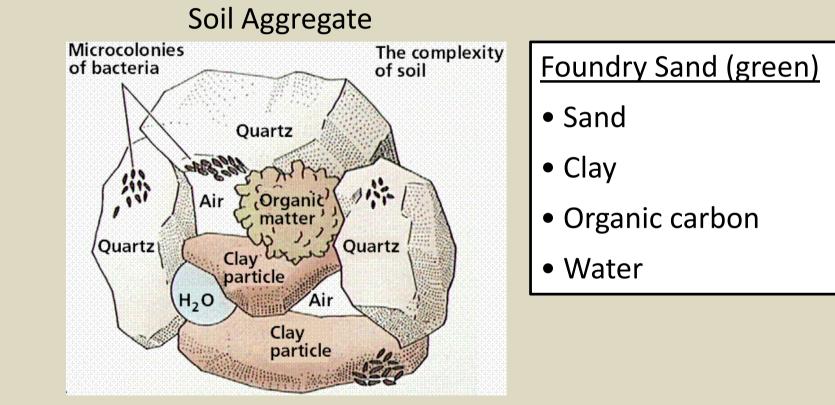
Assist regulators, consultants, site owners, and other stakeholders in understanding the principles of soil amendment application for remediating and revegetating contaminated sites and to encourage widespread use of this alternative to revitalize and reuse contaminated land

http://www.clu-in.org/download/remed/epa-542-r-07-013.pdf


http://www.kurtz-bros.com

- Six locations in Ohio, USA
- Obtains sand from 20 foundries
- About 80,000 tons of sand per year for manufactured soils
- 160,000 tons per year for geotechnical applications
- Beneficially used <u>5,400,000</u> tonnes of sand to date

Soil Blending Operation



Manufactured Soil and Soilless Media

Agricultural Research Service

Using Foundry Sands in Manufactured Soils

Manufactured Soils and Plants

Can manufactured soils containing WFS be used to successfully grow plants?

Turfgrass Study: Penn State University

Lettuce Bioassay

Control: 0% WFS, 5% silica sand

Soil blend: 5% WFS

Soil blend: 10% WFS

No difference in RDMG; no visual deficiencies or toxicities

Safe to Eat!!!

Additional Plant Bioassays (50% WFS)

Horticultural Applications

Blended with foundry sand, biosolids compost, rice hulls, pine bark and natural soil, Kurtz Bros. container mix has become the preferred soil blend for Ohio nurseries

Landscaping Applications

Barrington Country Club

Foundry sand is an essential ingredient in Kurtz Bros. Bed Mix to create a well-drained sandy loam growing medium for more successful landscape projects.

Medina Country Club

Commercial Applications

Euclid Corridor, Cleveland, OH 5,300 cubic meters of planting mix

Cleveland Clinic, Cleveland, OH 15,300 cubic meters of topsoil

Foundry sand in the mix creates the economic advantage needed to provide quality soil to large projects

Cleveland Art Museum, Cleveland, OH 9,200 cubic meters of topsoil

Green Building Applications

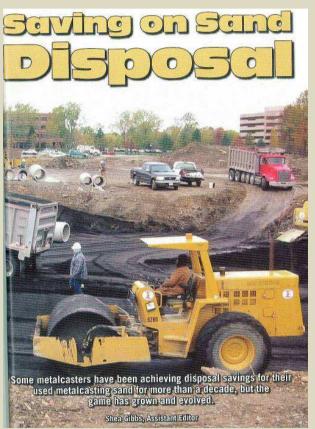
Rooftop gardens are proven to save heating and cooling energy and costs, remediate storm water, and create better environments for building occupants

Sandy loam soil with foundry sand in the mix helps create an ideal, light weight blend, when combined with Haydite expanded shale aggregate

Road Base Applications

Road Embankment Project

The system uses a series of pre-cast modular wall pieces in conjunction with galvanized steel reinforcing strips which are layered into the backfill



Why Use Foundry Sand as Road Base and in Embankments?

- Extremely uniform material
- Excellent compaction properties
- Easy to handle
- Low cost, relatively abundant
- Not "as" moisture sensitive
- Not "as" susceptible to freeze thaw

Slide Repair Along Highway

- 9,000 Tonnes of waste foundry sand
- Layered composite
- Excellent compaction and drainage

Stepped Road Embankment, Ohio Turnpike

Creation of an embankment that blends with nature

Cleveland Hopkins Airport, Creek Diversion

15,000 cubic meters of flowable fill used as pipe bedding around four 3 m diameter pipes

Notable Foundry Sand Projects, Ohio, USA

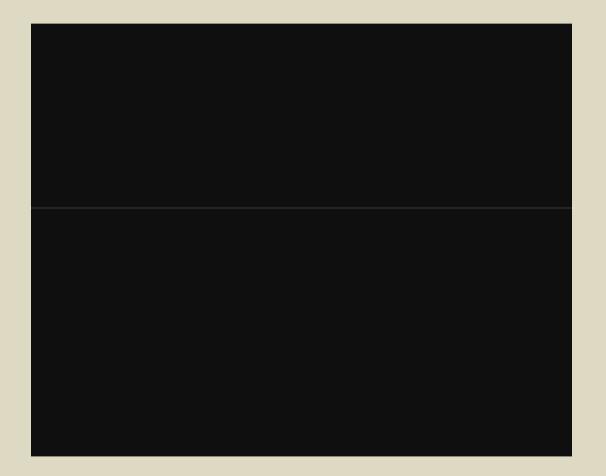
Project/Location	Tonnes
MSE Wall Projects	
Ohio Turnpike Third Lane Project 779901	49,000
Schaaf Road Bridge Replacement	25,000
I-271 & Route 303 IR Bridge Replacement	19,000
Fulton Road Bridge Replacement	11,000
I- 71 & Route 83	7,000
ODOT Projects	
I-271 Slide	9,000
I-271 Express Lanes	5,000
Route 82 & Route 8 ODOT Subbase – Macedonia	500
SR 237 Front St. Railroad Grade Separation – Berea	78,000
Public Projects - Embankments	
Ohio Turnpike Third Lane Project 439901	53,000
Ohio Turnpike Great Lakes Service Plazas	45,000
Patriot's Way	22,700
Public Projects – Flowable Fill	
Abrams Creek Diversion (Cleveland Airport)	18,000
Private Projects – Embankments	
Cloverleaf	544,000
West Creek	454,000
Rockside Road	454,000
Footes/Cinemark Theatre	227,000
Vale	145,000
Majewski	87,000
PLPI Heinton Road	44,000
CDF Area I – Final Grade	23,000
Embassy Suites	18,000
City of Aurora Sewer	18,000
Towpath I/Towpath II	14,000
Richfield Retail Development	9,000
Delta – York Drive	9,000
Leachate Collection Systems	
Rosby Hill	11,000
Waste Management Leachate Collection	9,000

Paver Stones, Joinville, Brazil

- State law allows for use of foundry sands in nonstructural concrete and asphalt
- Paver formulation is 47% foundry sand, 28% stone powder, 19% cement, and 6% water

Paver Stone Facility

Paver Stones, Brazil



Interlocking paver stones are widely used in urban applications due to their versatility and ease of installation

Paver Stones at Tupy

Experimenting with Asphalt, Brazil

- 10% Foundry sand in hot mix asphalt concrete
- Performed very well
- Transportation department now considering using WFS

Resource Recovery Corporation, MI, USA

http://www.rrcrecycles.com/home.html

- Sand obtained from 30 foundries
- Sand for daily cover, leachate collection media, and asphalt
- Slag for hot mix asphalt and concrete
- Processed 500,000 tons of foundry byproducts since 1991

Sand Processing at RRC

- Manual screening
- Rotary kiln (425°C)
- Metal fines removal

Liner and Leachate Collection Medium

- Sand protects synthetic liner from being punctured (45 cm layer)
- Replacement for virgin sands
- Leachate is sent and treated at a local sewage treatment plant
- 23,000 Tonnes of sand used per cell

Slag

- Vitreous material (silicon dioxide and metal oxides)
- Most are ferrous slags
- World iron slag output around 180 to 230 million tonnes annually
- Steel slag 100 to 145 million tonnes
- Very valuable byproduct!!!
- U.S. slag valued at \$300 million

Beneficial Uses of Slag

Blast Furnace Slag			Steel
Air-Cooled	Pelletized	Granulated	Slag
Asphalt aggregate	Concrete masonry	GGBS cement	Asphalt aggregate
Concrete/Masonry aggregate	Lightweight concrete	Soil cement	Fill
Insulation/ mineral wool	Lightweight fill	Roller compacted concrete	Cement Mfg. raw feed
Cement Mfg. raw feed	Insulation		Agriculture/Soil Amendment
Agriculture/Soil Amendment	Road Base	Road Base	Environmental Applications
Fill	×	Agriculture/Soil Amendment	Railroad ballast
Roof aggregate	×	×	Road Base
Railroad ballast	×	×	Gabions/Rip Rap
Glass manufacture	×	×	×
Environmental Applications	×	×	×
Gabions/Rip Rap	×	×	×
Lightweight fill	×	×	×

Slag Fertilizer

- Blast furnace and steel converter slag (BOFS)
- Blast furnace slag contains CaO, MgO, and SiO₂
- Solubility of Ca, Mg, and Si is higher than other conditioners
- Steelmaking slag also contains FeO and Fe₂O₃ (24%), MnO (5%), and P₂O₅ (5%)
- BOFS as Fe fertilizer and liming agent due to low P

Slag Cement for Agricultural Applications

- Floor panels for liquid manure pits
- 25% slag cement
- Must withstand low pH of manure
- Strong enough to support weight of livestock and machinery

Slag Cement Concrete, AirTran JFK

- 153,000 cubic meters of concrete
- 482 Cast-in-place columns with 20 to 30% slag
- 5,000 precast tensioned boxes with 40% slag

Georgia Aquarium, Atlanta

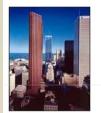
- 54,000 cubic meters of slag cement
- Proportions ranging from 20 to 75% slag
- Concrete with strength up to 55MPa

Slag Heaps, Nord-Pas-de-Calais, France

Move over Taj Mahal, slag heaps are now a UNESCO World Heritage Site

Some heaps 90 hectares and 140 m tall

Dry Skiing on Slag Heaps



Additional Information on Slag Use

From byproduct to co-product.

Since 1918, The NSA has promoted the use of Blast Furnace and Steel Furnace Slag, Blast Furnace slag has been called the "All-Purpose Aggregate" as it can be used in all construction applications as either a normal weight or lightweight (expanded or pelletized) aggregate depending on how it was formed and processed. Blast Furnace Slag is also quickly quenched by water or air to produce Granulated Blast Furnace Slag. When ground to cement fineness, GGBS (ground granulated blast slag) has been used extensively as a Portland cement replacement in concrete. Steel Furnace slag has been used in many construction applications and as a raw ingredient in Portland cement manufacture, but its primary use is as premium asphalt aggregate. These types of slag and the uses are covered extensively in numerous online documents and the applications matrix.

Scotia Plaza Toronto, Ontario, Canada

Slag products (air-cooled, pelletized, ground granulated) used in the poured concrete and lightweight masonry units for durability, light weight, fire resistance and aesthetic quality.

Slags are produced in many metallurgical operations throughout the world and are considered a co-product of the production of iron and steel. Slag is an environmentally sound material that has been used to aid in the remediation of many environmentally damaged areas such as Acid Mine Discharge. A copy of the Risk Assessment report is available in the environmental section of this website. Protect the environment. Think re-use and use slag, a renewable resource, in your next Green project.

©2009 National Slag Association

Looking for Slag Cement?

If you'd like to know where to get slag cement in your area, click here for a listing of SCA member company sales offies

Other Spotlight Items...

http://www.nationalslag.org/index.htm

http://www.slagcement.org/index.html

Welcome to the Slag Cement Association

What is Slag Cement?

Siag cement, or ground granulated blast-furnace slag (GGBES), has been used in concrete projects in the United States for over a century. Earlier usage of slag cement in Europe and elsewhere demonstrates that long-term concrete performance is enhanced in many ways. Based on these early experiences, modern designers have found that these improved durability characteristics help further reduce life-cycle costs, lower maintenance costs and makes concrete more sustainable. For more information on how slag cement is manufactured and it enhances the durability and sustainability of concrete, click here.

News about the effects deicer chemicals have on concrete containing slag cement

"Deicer Scaling Resistance of Concrete Pavements, Bridge Decks, and Other Structures Containing Slag Cement - Phase 1: Site Selection and Analysis of Field Cores" reported by the National Concrete Pavement Technology Center. To obtain the full report Deicer Scaling Resistance of Concrete Pavement - bridge Decks and other structures containing slag cement - schlorholtz deicing phase1.pdf

Michigan Tech Transportation Institute has completed a study on "Deleterious Effects of Concentrated Deicing Solutions on Portland Cement Concrete". In general they concluded that, "concrete mixtures containing 35% slag cement showed the lowest susceptibility to chemical degradation by deicing chemicals". To read the entire report misti tech brief 1-1.pdf

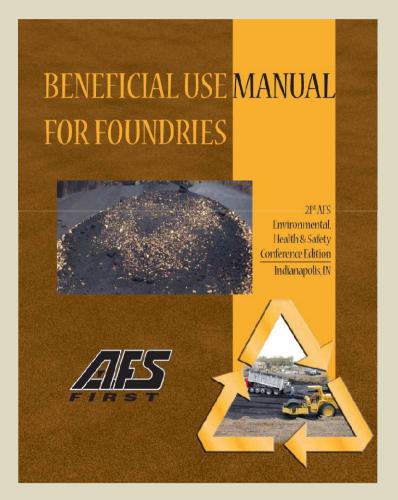
The South Dakota DOT research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Their study showed that chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both ground granulated blast furnace slag (slag cement) and fly ash were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, slag cement performed better as a mitigation strategy as compared to coal fly ash. To read the full executive study click SD2002-01 Executive Summary Final.pdf

Baghouse Dust

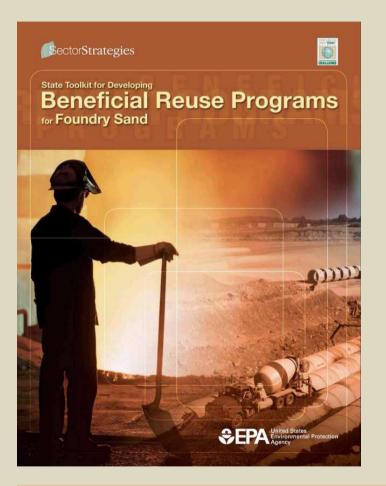
- Dust from melting, pouring, cooling, shakeout, and grinding and finishing
- High silica and metal content (Cd, Cu, Cr, Pb, Zn)
- Recovery of ZnO from EAFD
- May be suitable as a silica substitute in the manufacture of Portland cement
- Filler in extruded plastic parts (e.g. furniture casters)

Furnace and Ladle Refractory Materials

- Alumina, carbon, silica, fireclay, magnesia, dolomite, calcium oxide
- Most are currently managed as solid wastes
- Generally not beneficially used due to variable particle size
- Grinding necessary
- Some contain high metal levels, but generally inert
- Alumina and silica in Portland cement



Where Do You Go From Here?


- Marketing of foundry wastes to end users
- Establish a Steering Committee (liaison, scientists, regulatory agencies, foundry representatives)
- Foundrymen don't have the time
- Educate stakeholders about the metalcasting process; let them see and feel foundry wastes
- Evaluate existing regulations and focus efforts
- Hold seminars, workshops, and demonstration projects
- Education and persistence are the keys to success

American Foundry Society & FIRST

Manual to assist foundries in the beneficial use of metalcasting sands and other byproducts

U.S. Environmental Protection Agency

Document was developed to assist states in improving or developing beneficial use programs

http://www.epa.gov/sectors/sectorinfo/sectorprofiles/metalcasting/foundry.html

Waste?

Think of foundry waste as a valuable byproduct. Waste is not a waste if beneficially used.

